CECOMA 2016
Challenges in the Environmental Management of Coastal and Marine Areas

LAS PALMAS DE GRAN CANARIA, SPAIN
25-29th January of 2016

TOGETHER WE WILL BUILD A BETTER WORLD

ORGANIZED BY ECOAQUA
&
UNIVERSITY OF LAS PALMAS DE GRAN CANARIA

IN COLLABORATION WITH
IUCN

ECOAQUA
www.ecoaqua.eu

EU

SEVENTH FRAMEWORK PROGRAMME

ULPGC

IUCN
Table of Contents

PROGRAMME CECOMA 25-29TH JANUARY 2016 ... 1

LOCATION: .. 6

SESSION 1 - INTEGRATED MANAGEMENT OF COASTAL AND MARINE AREAS 7
including aquaculture in the management of coastal and marine areas
through the development of integrated multi-trophic aquaculture 8
why experience and knowledge may change our way to approach the
environmental challenges? ... 9
the biodiversity database of the canary islands. analytical tools in
conservation ... 10
Marine pilot - MSFD & inspire exploratory project 11
alien species in the Baltic sea: danger or chance? ... 12
regulating and managing marine living resources: five decades of triumph
and failure in the european union ... 13

SESSION 2: STRUCTURE AND FUNCTION OF COASTAL & MARINE ECOSYSTEMS ... 14
the role of glaciation-related sea level oscillations in shaping the
present macaronesian island biotas .. 15
open ocean fish farming: some technical considerations for a better
understanding of environmental threats and advantages 16
quantitative analysis of seaweeds on the intertidal rocky coasts of
santiago island, cape verde archipelago .. 17
an ‘endemic’ fish community associated to seagrass meadows off the
canary islands ... 18
seasonal and spatial patterns in the morphology and life story of the
brown macroalgae cystoseira abies-marina (fucales, phaeophyceae) in the
rocky intertidal from gran canaria (eastern atlantic): environmental
drivers of variation ... 19

SESSION 3 - RESPONSIBLE USE OF COASTAL & MARINE RESOURCES 20
building global networks of MPAs: challenges, advances and opportunities
... 21
the need for technical and legal tools to support a competitive and
sustainable ecotourism associated to marine farms at Spain 22
modeling the effects of fishing management scenarios on the gran canaria
marine ecosystem ... 23
the real impact of recreational fisheries in canary islands 24
first steps towards environmental fisheries certification considering the
standard of the marine stewardship council (MSC): the case of optuna &
Islatuna, artisanal live bait tuna fleets (canary islands, Spain) 25
preparatory action for the implementation of the international
convention for the control and management of ships’ ballast water and
sediments (BWM convention): identification of species in las palmas port. 26

SESSION 4 - EFFECTS OF GLOBAL CHANGE IN COASTAL AND MARINE ECOSYSTEMS 27
responses of nearshore and coastal biodiversity and ecosystems to
climate change: combining long-term observations, experiments and
modelling .. 28
land-sea interactions in a changing scenario: new challenges in the
environmental management of shallow marine costal areas 29
effects of ocean acidification on feeding rates of juveniles sea urchins
paracentrotus lividus and Diadema africanum 30
RELATIONSHIP INTERSPECIFIC AND ENVIRONMENTAL OF OCTOPUS VULGARIS AND PAGRUS PAGRUS THROUGH CATCHES OF THE GRAN CANARIA FISHING FLEET ... 31
OVEREXPLOITATION OF THE GALAPAGOS SAILPIN GROUPER: THE NEED FOR COMMUNITY BASED COLLABORATIVE EFFORTS TO ESTABLISH MANAGEMENT REGULATIONS.. 32

SESSION 5 - ECOSYSTEM CONSERVATION AND AQUACULTURE .. 33
HOLISTIC APPROACHES TO UNDERSTAND THE FUNCTIONING AND RESILIENCE OF COASTAL ECOSYSTEMS: FROM GENES TO ECOSYSTEM SERVICES PROVIDED BY SEAGRASS MEADOWS.. 34
DEVELOPMENT OF MARINE AQUACULTURE IN BRAZIL: INSIGHTS ON ENVIRONMENTAL INTERACTIONS ... 35
LARGE SCALE EFFECTS OF AQUACULTURE ESCAPEES ON FISHERIES LANDINGS:
EVESDENCES FROM THE MEDITERRANEAN SEA ... 36
COMBINING ECOLOGY AND AQUACULTURE FOR IN SITU MARINE CONSERVATION INITIATIVES: SEAHORSE IN GRAN CANARIA ISLAND (NE ATLANTIC) - A CASE STUDY 37
A KINETIC ASSAY FOR NITRATE REDUCTASE (NR) IN Ulva rigida .. 38
SEA URCHIN Diadema africanum POPULATIONS AT THE SELVAGENS ISLANDS 39
SUSTAINABLE PRODUCTION OF ABALONE Haliotis Tuberculata Cocinea IN INTEGRATED MULTI-TROPHIC AQUACULTURE SYSTEMS ... 40
IDH ACTIVITY IN PLANKTOMIC ORGANISMS: A NEW PROXY FOR POTENTIAL CO2 PRODUCTION AND RESPIRATORY METABOLISM AT THE BASE OF THE FOOD CHAIN 41
SECURING THE FUTURE OF CRITICALLY ENDANGERED ANGEL SHARKS THROUGHOUT THEIR NATURAL RANGE .. 42
POSEIDON PROGRAM: CITIZEN SCIENCE FOR THE STUDY OF MARINE BIODIVERSITY IN THE CANARY ISLANDS .. 43
BEST III AND THE CHALLENGES OF DEFINING COASTAL AND MARINE KEY BIODIVERSITY AREAS IN MACARONESIA .. 44

POSTER SESSION .. 46
P1 - COASTAL SUSTAINABILITY INDICATORS. A PROPOSAL FOR AGRICULTURE AND LIVESTOCK DEVELOPMENT WITHIN THE FRAMEWORK DPSIR (GRAN CANARIA, SPAIN). .. 47
P2 - COASTAL SUSTAINABILITY INDICATORS. A PROPOSAL FOR TOURISM AND URBAN DEVELOPMENT WITHIN THE FRAMEWORK DPSIR (GRAN CANARIA, SPAIN) ... 48
P3 - FEASIBILITY OF DEVELOPMENT OF AN INDIVIDUAL BEHAVIOUR-BASED MODEL OF FERAL HORSES (Equus ferus caballus) IN SABLE ISLAND, NOVA SCOTIA, CANADA 49
P4 - ARE ZOOPLANKTON SECONDARY PRODUCTION MODELS ABLE TO PREDICT GROWTH IN THE MARINE MYSIS Leptomysis lingura (G.O. Sars, 1866)? ... 50
P5 - RESPIRATION OF PRIMARY AND SECONDARY PRODUCERS MEASURED BY DIFFERENT METHODOLOGIES .. 51
P6 - IMPACT OF INCREASING pCO2 ON MARINE POTENTIAL RESPIRATORY ACTIVITY 52
P7 - IMPACT OF RECREATIONAL FISHING ON FISH POPULATIONS DURING THE LAST 50 YEARS IN CANARY ISLANDS .. 53
P8 - SHELL ALLOMETRIC DIFFERENCES IN BROWN MUSSEL UNDER LONGLINE CULTURE REGARDING WILD POPULATION (CANARY ISLANDS, SPAIN) ... 54
P9 - DEFINING, ASSESSING AND VALORISING KEY MARINE HABITATS IN THE MACARONESIAN ARCHIPELAGOS .. 55
P2 - COASTAL SUSTAINABILITY INDICATORS. A PROPOSAL FOR TOURISM AND URBAN DEVELOPMENT WITHIN THE FRAMEWORK DPSIR (GRAN CANARIA, SPAIN).

Pérez-G., Y*, Bilbao A¹, González, M², Cedeño, V², Suárez, B², González, G³, Tello, O⁴, González, S⁴, Jiménez, S³, Santamaría, M.T.G³, Betancort, J⁵ & Pavón N⁶

¹ GMR Canarias S.A.U. c/Los Cactus 68, Polígono Industrial de Arinaga, 35118, Agüimes, Islas Canarias, Spain. *yeraypg@gmrcanarias.com
² Departamento de Análisis Económico Aplicado. Campus de Tafira, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria. Spain.
⁵ Instituto Tecnológico de Canarias (ITC). Dpto. de Agua. Playa de Pozo Izquierdo s/n, 35119, Santa Lucía, Las Palmas, Spain.

The OMARCOST project, "Strategy for environmental sustainability of cross-border coastal environment" carried out, among other activities, the selection of environmental indicators in the geographical area of the Canary Islands (Spain) and the Coast Region Sous Massa Drâa (Morocco). These indicators are presented as efficient and descriptive tools of phenomena, for it these are optimal for integrated coastal zone management (ICZM). DPSIR framework (Driving force, Pressure, State, Impact and Response) was used as a frame for selecting ICZM-indicators of sustainability on the island of Gran Canaria (Spain). DPSIR is useful in analyzing connections between socioeconomic trends, ecological phenomena and institutional responses in an integrated manner. This paper describes a proposal of indicators for tourism and urban or residential use, because both are very influential driving forces on the coast of the Canary Islands (Gesplan 2012). The selection was based on their suitability, data availability and ease of interpretation; by using the multi-criteria analysis (Saati, 2008). In short, the main 7 selected indicators of territorial units for tourism were: 1.Number of tourists entering in the period (driving force-socioeconomic), 2.Water consumption a night (driving force-eco efficiency), 3.Percentage of intertidal occupied by tourist infrastructure (pressure), 4.Percentage of beaches comply with the law quality of bathing water (state about tourism), 5.Number of negative references about the coastal environment carried out by intermediary organizations or representatives of companies that provide tourist services at a tourism unit (impact), 6.Percentage of treated and reused wastewater (response, material and percent) and 7.Percentage coastal marine area under some form of conservation (response-habitats and biodiversity-). And the mean 8 selected indicators of territorial units for residential use: 1.Resident and floating population per local government (driving force-population and activities-), 2. Urbanization index (driving forces-population and activities), 3. Energy consumption per inhabitant on household and accommodation units (driving forces-natural resources-), 4.Annual increase of urban land in hectares / year (pressure), 5.Mass of solid waste/inhabitant/year per local government (by type) (pressure), 6. Number of complaints and denunciations per year by local perceived impacts due to wastewater treatment plants, local and water pollution (impact), 7. Percentage of new buildings licences on old buildings over all residential building permits in a year (response- urban ordination) and 8.Indicator of inefficiency in the use of urban and urbanized land (depending on soil type) (response-urban ordination-). This work has been carried out with the support of the European Union (EU) and cofounded by European Regional Development Fund (ERDF) and POCTEFEX Programme.

References

Keywords: DPSIR, indicators, Integrated Coastal Zone Management (ICZM), multi-criteria analysis.
Introduction

The coastal zone is an extremely complex social-ecological system that changes in relation to its environmental, socio-economic, cultural and governance factors (Diedrich et al., 2010). Integrated coastal zone management (ICZM) is a process that seeks to develop an integrated model for sustainable development, that is based on finding points of convergence among these factors (IOC, 2006; cited Diedrich et al., 2010). Indicators are presented as efficient and descriptive tools of anthropogenic and natural phenomena, which are optimal for ICZM (Diedrich et al., 2010). Indicators are defined as quantitative/qualitative statements or measured/observed parameters that can be used to describe existing situations and measure changes or trends over time (IOC, 2006), also in evaluating an isolated phenomenon (diagnosis) or in a monitoring system to evaluate processes and detect trends (Gabrielsen-Dueñas and Santos-Lumigo 2010). In ICZM, sustainability indicators and scenarios are no genetic, rather they are specific to sites and restricted by political and local realities (Diedrich et al., 2010). In the context of these realities, the analytical framework used for an assessment helps to determine the variety of indicators that are chosen to communicate the outcomes of that assessment (Gabrielsen & Bosch, 2003). For its assessments of the relations between human activities and the environment, Environmental European Agency (EEA) uses the Driving forces-Pressures-State-Impact-Responses (DPSIR) framework (Figure 1; Gabrielsen & Bosch, 2003) and it has been used in this work.

The main goal of this work has been to show a proposal of sustainable indicators that are relevant to the tourism and urban development (driving forces) in Gran Canaria. Since both are two important and influential driving forces the Canary Islands coast (Gospelan, 2012) and therefore they should be taken into account in a local ICZM system.

Methods

First, a shortlist of indicators was obtained according to the references, based on the established framework (DPSIR model) and the following four criteria: relevance, data availability, regular updating and ease of interpretation (criteria used by the public bank of environmental indicators of Ministry of Agriculture, Food and the Environment, MAGRAMA). Second, a DELPHI analysis was performed with four specialists in tourism and two in urban development, in order to decrease the number of preselected indicators. Third, the final weight of indicators was estimated by an Analytic Hierarchy Process (AHP; Saaty 1980). It was conducted in the two driving forces by the experts considered according to three criteria: relevance, data availability and ease of interpretation.

Results and discussion

The AHP set 32 (tourism) and 33 (urban development) indicators initially, divided into DPSIR categories. The experts observed the importance granted in parentheses (tourism // urban development) to the criteria. Notwithstanding DPSIR possess some drawbacks, the fact that the method is still in use more than three decades after its creation also attests to its robustness, and it has been concluded that the DPSIR framework is a useful tool that can still be refined (Gari et al., 2015). It links cause-effect relationships among the five categories of the framework (Figure 1) and has been used for analysing and assessing the social and ecological problems of aquatic systems subject to anthropogenic influence, and it has been used to develop ICZM (Gari et al., 2015). We believe that DPSIR has successfully guided the selection of indicators for the drivers evaluated.

References

Acknowledgments

The OMARCIOT project (www.omarciot.org) “Strategy for environmental sustainability of cross-border coastal environment” was carried out with the support of the European Union (EU) and cofounded by European Regional Development and Spain-External Borders Cross-Border Cooperation Operational Programme (POCTEFEX).

Figure 1. The Driving force, Pressures, State, Impact and Responses (DPSIR) framework scheme.

Figure 2. Normalized weights resulting from the Analytic Hierarchy Process (AHP) in tourism (these include a 42% of the total weight of all DPSIR categories).

Figure 3. Normalized weights resulting from the Analytic Hierarchy Process (AHP) in urban development (these include a 53% of the total weight of all DPSIR categories).

Table 1. Names of the 7 indicators as a result of the Analytic Hierarchy Process (AHP).

Table 2. Names of the 8 indicators as a result of the Analytic Hierarchy Process (AHP).